NetOwl Extractor

Entity Extraction

NetOwl Extractor offers the best-of-breed named entity extraction, relationship and event extraction, geotagging, and sentiment analysis in multiple languages based on over a decade of advanced research and development. Using sophisticated computational linguistics and natural language processing technologies, NetOwl Extractor accurately finds and classifies key entities, events, and relationships in unstructured text.

NetOwl Extractor supports multiple domains and languages and also features Smart Geotagging for intelligent exploitation of geo-codable information found in text. NetOwl Extractor can be customized to perform specialized entity extraction and has broad applications in many industries, including intelligence analysis, social media analysis, competitive intelligence, enterprise information management, e-discovery, and life sciences research.

NetOwl Extractor’s state-of-the-art accuracy and high throughput, combined with the latest cloud computing architectures using frameworks such as Hadoop and HPCC (High Performance Computing Cluster), makes advanced Big Data Analysis a reality for unstructured text.

Features

Comprehensive Semantic Ontology

NetOwl Extractor offers a broad semantic ontology for entity extraction that goes far beyond that of standard named entity recognition.  This extensive ontology has been developed in partnership with subject matter experts. The built-in ontology includes not only a variety of entities but also links and events.

Smart Geotagging

NetOwl Extractor offers geotagging capabilities, in addition to entity extraction, to intelligently exploit geo-codable entities found in text.

Smart Name Translation

NetOwl Extractor offers English translation of entities found by entity extraction from foreign language texts.

Entity Extraction Customization

NetOwl Extractor’s Creator Edition (CE) lets its users perform extraction customization of entities, links, and events.

Semantic Disambiguation

NetOwl Extractor recognizes and classifies concepts using linguistic context. This sophisticated feature distinguishes semantic differences like:

  • “Bush” (person) vs. “bush” (plant)
  • “Jordan” place vs. person (e.g., “Michael Jordan)
  • “fire” a weapon vs. “fire” a person

Coreference Resolution

NetOwl Extractor resolves co-referring extracted entities, whether they are name aliases, pronouns, or definite noun phrases, identifying them as referring to the same object. For example:

  • “FAA” => “Federal Aviation Administration”
  • “The company’s Chairman of the Board” => “John Smith”

3rd-Party Tool Support

NetOwl Extractor supports a variety of leading 3rd-party products and tools out-of-the-box to make the integration easy and allow for rapid deployments.

Benefits

  • Big Data Analysis for unstructured text
  • Advanced entity extraction
  • Unique link and event extraction capabilities
  • Intelligent geotagging